Birth-and-death evolution with strong purifying selection in the histone H1 multigene family and the origin of orphon H1 genes.

نویسندگان

  • José M Eirín-López
  • Ana M González-Tizón
  • Andrés Martínez
  • Josefina Méndez
چکیده

Histones are small basic nuclear proteins with critical structural and functional roles in eukaryotic genomes. The H1 multigene family constitutes a very interesting histone class gathering the greatest number of isoforms, with many different arrangements in the genome, including clustered and solitary genes, and showing replication-dependent (RD) or replication-independent (RI) expression patterns. The evolution of H1 histones has been classically explained by concerted evolution through a rapid process of interlocus recombination or gene conversion. Given such intriguing features, we have analyzed the long-term evolutionary pattern of the H1 multigene family through the evaluation of the relative importance of gene conversion, point mutation, and selection in generating and maintaining the different H1 subtypes. We have found the presence of an extensive silent nucleotide divergence, both within and between species, which is always significantly greater than the nonsilent variation, indicating that purifying selection is the major factor maintaining H1 protein homogeneity. The results obtained from phylogenetic analysis reveal that different H1 subtypes are no more closely related within than between species, as they cluster by type in the topologies, and that both RD and RI H1 variants follow the same evolutionary pattern. These findings suggest that H1 histones have not been subject to any significant effect of interlocus recombination or concerted evolution. However, the diversification of the H1 isoforms seems to be enhanced primarily by mutation and selection, where genes are subject to birth-and-death evolution with strong purifying selection at the protein level. This model is able to explain not only the generation and diversification of RD H1 isoforms but also the origin and long-term persistence of orphon RI H1 subtypes in the genome, something that is still unclear, assuming concerted evolution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Purifying selection and birth-and-death evolution in the histone H4 gene family.

Histones are small basic proteins encoded by a multigene family and are responsible for the nucleosomal organization of chromatin in eukaryotes. Because of the high degree of protein sequence conservation, it is generally believed that histone genes are subject to concerted evolution. However, purifying selection can also generate a high degree of sequence homogeneity. In this study, we examine...

متن کامل

Common phylogenetic origin of protamine-like (PL) proteins and histone H1: Evidence from bivalve PL genes.

Sperm nuclear basic proteins (SNBPs) can be grouped into three main categories: histone (H) type, protamine (P) type, and protamine-like (PL) type. Protamine-like SNBPs represent the most structurally heterogeneous group, consisting of basic proteins which are rich in both lysine and arginine amino acids. The PL proteins replace most of the histones during spermiogenesis but to a lesser extent ...

متن کامل

Histone genes of the razor clam Solen marginatus unveil new aspects of linker histone evolution in protostomes.

The association of DNA with histones results in a nucleoprotein complex called chromatin that consists of repetitive nucleosomal subunits. Nucleosomes are joined together in the chromatin fiber by short stretches of linker DNA that interact with a wide diversity of linker H1 histones involved in chromatin compaction and dynamics. Although the long-term evolution of the H1 family has been the su...

متن کامل

Molecular evolution of the nontandemly repeated genes of the histone 3 multigene family.

In some species, histone gene clusters consist of tandem arrays of each type of histone gene, whereas in other species the genes may be clustered but not arranged in tandem. In certain species, however, histone genes are found scattered across several different chromosomes. This study examines the evolution of histone 3 (H3) genes that are not arranged in large clusters of tandem repeats. Altho...

متن کامل

Complex Evolutionary History of the Mammalian Histone H1.1–H1.5 Gene Family

H1 is involved in chromatin higher-order structure and gene regulation. H1 has a tripartite structure. The central domain is stably folded in solution, while the N- and C-terminal domains are intrinsically disordered. The terminal domains are encoded by DNA of low sequence complexity, and are thus prone to short insertions/deletions (indels). We have examined the evolution of the H1.1-H1.5 gene...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular biology and evolution

دوره 21 10  شماره 

صفحات  -

تاریخ انتشار 2004